Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
bioRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38105986

RESUMO

Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals, whereas during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e., when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Further, the dysgranular mid-insula may indeed be a "locus of disruption" for psychiatric disorders.

2.
Psychophysiology ; : e14483, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950391

RESUMO

Regular participation in sports results in a series of physiological adaptations. However, little is known about the brain adaptations to physical activity. Here we aimed to investigate whether young endurance athletes and non-athletes differ in the gray and white matter of the brain and whether cardiorespiratory fitness (CRF) is associated with these differences. We assessed the CRF, volumes of the gray and white matter of the brain using structural magnetic resonance imaging (sMRI), and brain white matter connections using diffusion magnetic resonance imaging (dMRI) in 20 young male endurance athletes and 21 healthy non-athletes. While total brain volume was similar in both groups, the white matter volume was larger and the gray matter volume was smaller in the athletes compared to non-athletes. The reduction of gray matter was located in the association areas of the brain that are specialized in processing of sensory stimuli. In the microstructure analysis, significant group differences were found only in the association tracts, for example, the inferior occipito-frontal fascicle (IOFF) showing higher fractional anisotropy and lower radial diffusivity, indicating stronger myelination in this tract. Additionally, gray and white matter brain volumes, as well as association tracts correlated with CRF. No changes were observed in other brain areas or tracts. In summary, the brain signature of the endurance athlete is characterized by changes in the integration of sensory and motor information in the association areas.

3.
Front Psychiatry ; 14: 1223147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701094

RESUMO

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that persists into adulthood with both social and cognitive disturbances. Asperger's syndrome (AS) was a distinguished subcategory of autism in the DSM-IV-TR defined by specific symptoms including difficulties in social interactions, inflexible thinking patterns, and repetitive behaviour without any delay in language or cognitive development. Studying the functional brain organization of individuals with these specific symptoms may help to better understand Autism spectrum symptoms. Methods: The aim of this study is therefore to investigate functional connectivity as well as functional network organization characteristics using graph-theory measures of the whole brain in male adults with AS compared to healthy controls (HC) (AS: n = 15, age range 21-55 (mean ± sd: 39.5 ± 11.6), HC: n = 15, age range 22-57 [mean ± sd: 33.5 ± 8.5]). Results: No significant differences were found when comparing the region-by-region connectivity at the whole-brain level between the AS group and HC. However, measures of "transitivity," which reflect local information processing and functional segregation, and "assortativity," indicating network resilience, were reduced in the AS group compared to HC. On the other hand, global efficiency, which represents the overall effectiveness and speed of information transfer across the entire brain network, was increased in the AS group. Discussion: Our findings suggest that individuals with AS may have alterations in the organization and functioning of brain networks, which could contribute to the distinctive cognitive and behavioural features associated with this condition. We suggest further research to explore the association between these altered functional patterns in brain networks and specific behavioral traits observed in individuals with AS, which could provide valuable insights into the underlying mechanisms of its symptomatology.

4.
Int J Eat Disord ; 56(11): 2149-2154, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37578207

RESUMO

OBJECTIVE: Individuals diagnosed with anorexia nervosa (AN) often report seeing themselves as overweight. While body size estimation tasks suggest that such individuals overestimate their body size, these tasks have failed to establish whether this misestimation stems from visual misperception. Misestimation might, instead, be due to response bias. We designed a paradigm to distinguish between visual and response bias contributions to body size misestimation: the symmetrical body size estimation (s-BSE) paradigm. METHOD: The s-BSE paradigm involves two tasks. In the conventional task, participants estimate the width of their photographed body by adjusting the size of a rectangle to match. In the transposed task, participants adjust the size of a photograph of their body to match the rectangle. If overestimation stems exclusively from visual misperception, then errors in each task would be equal and opposite. Using this paradigm, we compared the performance of women diagnosed with AN (n = 14) against women without any eating disorder (n = 40). RESULTS: In the conventional task, we replicated previous findings indicating that both women with AN and women without any eating disorder overestimate their body size. In the transposed task, neither group adjusted the bodies to be narrower than the rectangle. Participants with AN set their photographs to be significantly wider. DISCUSSION: While we replicated previous findings of body size overestimation amongst women with AN and those without any eating disorder, our results are inconsistent with the hypothesis that such overestimation stems exclusively from visual misperception and instead suggest a substantial response bias effect. PUBLIC SIGNIFICANCE: Women with anorexia nervosa overestimate their own body size. Research has not yet determined whether this overestimation stems from them seeing themselves as larger or other, non-visual factors. We employ a new method for distinguishing these possibilities and find that non-visual factors influence size estimates for women with and without anorexia nervosa. This method can help future research control for non-perceptual influences on participant responses.


Assuntos
Anorexia Nervosa , Humanos , Feminino , Anorexia Nervosa/diagnóstico , Imagem Corporal , Tamanho Corporal , Sobrepeso , Coleta de Dados
5.
Artigo em Inglês | MEDLINE | ID: mdl-37055325

RESUMO

BACKGROUND: Anorexia nervosa (AN) is characterized by low body weight, disturbed eating, body image disturbance, anxiety, and interoceptive dysfunction. However, the neural processes underlying these dysfunctions in AN are unclear. This investigation combined an interoceptive pharmacological probe, the peripheral ß-adrenergic agonist isoproterenol, with resting-state functional magnetic resonance imaging to examine whether individuals with AN relative to healthy comparison participants show dysregulated neural coupling in central autonomic network brain regions. METHODS: Resting-state functional magnetic resonance imaging was performed in 23 weight-restored female participants with AN and 23 age- and body mass index-matched healthy comparison participants before and after receiving isoproterenol infusions. Whole-brain functional connectivity (FC) changes were examined using central autonomic network seeds in the amygdala, anterior insular cortex, posterior cingulate cortex, and ventromedial prefrontal cortex after performing physiological noise correction procedures. RESULTS: Relative to healthy comparison participants, adrenergic stimulation caused widespread FC reductions in the AN group between central autonomic network regions and motor, premotor, frontal, parietal, and visual brain regions. Across both groups, these FC changes were inversely associated with trait anxiety (State-Trait Anxiety Inventory-Trait), trait depression (9-item Patient Health Questionnaire), and negative body image perception (Body Shape Questionnaire) measures, but not with changes in resting heart rate. These results were not accounted for by baseline group FC differences. CONCLUSIONS: Weight-restored females with AN show a widespread state-dependent disruption of signaling between central autonomic, frontoparietal, and sensorimotor brain networks that facilitate interoceptive representation and visceromotor regulation. Additionally, trait associations between central autonomic network regions and these other brain networks suggest that dysfunctional processing of interoceptive signaling may contribute to affective and body image disturbance in AN.


Assuntos
Adrenérgicos , Anorexia Nervosa , Humanos , Feminino , Isoproterenol/farmacologia , Encéfalo , Tonsila do Cerebelo
6.
Eur J Neurosci ; 57(9): 1597-1610, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941217

RESUMO

Autonomic cardiac dysfunction is a common complication in patients with anorexia nervosa (AN). Despite its high prevalence, physicians often overlook this clinical condition, and little research has been dedicated so far. To probe the functional role of the neurocircuitry underpinning the poorly understood autonomic cardiac dysfunction, we examined dynamic functional differences in the central autonomic network (CAN) between 21 acute AN individuals and 24 age, sex and heart rate-matched healthy controls (HC). We assessed functional connectivity (FC) changes in CAN using seeds in the ventromedial prefrontal cortex, left and right anterior insular cortex, left and right amygdala and dorsal anterior cingulate cortex. The overall FC between the six investigated seeds is reduced in AN individuals compared to HC, although no changes were observed for single connections. Moreover, AN exhibited higher complexity in the FC time series of such CAN regions. Contrary to HC, we found that the degree of complexity between FC and heart rate (HR) series did not correlate in AN, suggesting a shift from central to peripheral control of the heart in AN individuals. Using dynamic FC analysis, we showed that the CAN transits across five functional states with no preference for any. Strikingly, at the state of weakest connectivity, the entropy significantly diverges between healthy and AN individuals, reaching its minimum and maximum values, respectively. Overall, our findings provide evidence that core regions of the CAN engaged in cardiac regulation are functionally affected in acute AN.


Assuntos
Anorexia Nervosa , Humanos , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Tonsila do Cerebelo , Giro do Cíngulo , Encéfalo , Mapeamento Encefálico
7.
Sci Rep ; 12(1): 16743, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202877

RESUMO

Physical exercise causes marked adjustments in brain function and the cardiovascular system. Brain regions of the so-called central autonomic network (CAN) are likely to show exercise-related alterations due to their involvement in cardiac control, yet exercise-induced CAN changes remain unclear. Here we investigate the effects of intensive exercise on brain regions involved in cardiac autonomic regulation using resting-state functional connectivity (rsFC). We explored rsFC of six core regions within CAN, namely ventromedial prefrontal cortex, dorsolateral anterior cingulate cortex, left/right amygdala, and left/right anterior insula, in 20 endurance athletes and 21 non-athletes. We showed that athletes had enhanced rsFC within CAN and sensorimotor areas compared to non-athletes. Likewise, we identified two networks with increased rsFC encompassing autonomic and motor-related areas using network-based statistics analysis. In addition, rsFC displayed an inverse relationship with heart rate, where the stronger rsFC in athletes correlates with their slower heart rate. Despite this significant relationship, mediation analysis revealed that heart rate is a weak mediator of the effect of intensive physical training on rsFC. Our findings prove that physical exercise enhances brain connectivity in central autonomic and sensorimotor networks and highlight the close link between brain and heart.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Tonsila do Cerebelo , Encéfalo/fisiologia , Giro do Cíngulo , Humanos , Masculino
8.
Front Neurosci ; 15: 691988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267625

RESUMO

BACKGROUND: Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects. METHODS: HRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump'n'run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC. RESULTS: First, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6 ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex, and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions. CONCLUSION: Our results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.

9.
Brain Behav ; 11(8): e2235, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34318622

RESUMO

INTRODUCTION: Anorexia nervosa (AN) is a severe psychiatric illness with alarming mortality rates. Nevertheless, despite former and recent research results, the etiology of AN is still poorly understood. Of particular interest is that, despite exaggerated response control and increased perfectionism scores, patients with AN seem not to perform better that those unaffected in tasks that require inhibitory control. One reason might be aberrant processing of errors. The objective of our study was thus to obtain further insight into the pathopsychology of AN. We were particularly interested in neuronal and autonomic responses during error processing and their association with behavior. METHODS: We analyzed 16 acute patients suffering from restrictive type AN and 21 healthy controls using functional magnetic resonance imaging (fMRI) with simultaneous physiological recordings during a Go/Nogo response inhibition task. Data were corrected for noise due to cardiac and respiratory influence. RESULTS: Patients and controls had similarly successful response inhibition in Nogo trials. However, in failed Nogo trials, controls had significantly greater skin conductance responses (SCR) than in correct Nogo trials. Patients did not exhibit elevated SCR to errors. Furthermore, we found significantly increased neuronal responses, especially in the amygdala and hippocampus, in controls compared to patients during error trials. We also found significant positive correlations in controls but not in patients between Nogo performance and activation in the salience network core regions after errors. CONCLUSION: Acute restrictive type AN patients seem to lack neuronal and autonomic responses to errors that might impede a flexible behavior adaption.


Assuntos
Anorexia Nervosa , Humanos , Imageamento por Ressonância Magnética
10.
Brain Behav ; 11(5): e02130, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33784023

RESUMO

Evidence suggests functional brain networks, especially the executive control network (ECN) and default mode network (DMN), to be abnormal in schizophrenia. Dysfunctions within the locus coeruleus (LC)-noradrenaline (NE) system, which is supposed to be pivotal to modulate neuronal network activation during executive control (e.g., working memory function), are also considered to play a vital role in the occurrence of positive (e.g., hallucinatory) or negative (e.g., inattentive) symptoms in these patients. In the present study, we sought to shed further light on the role of the LC-NE system in patients with schizophrenia. More specifically, we wanted to improve our understanding of the relationship and possible disturbances of the ECN and DMN during a working memory task in patients. A total of 58 healthy control subjects and 40 medicated patients with schizophrenia were investigated using a working memory 3-back task during functional magnetic resonance imaging. Main findings of our present study were differential dynamics of ECN and DMN blood oxygenation level-dependent (BOLD) activations with increasing task demands in both patients and controls. Moreover, we found increased BOLD activation in the LC in patients compared to controls in the interaction contrast between groups and conditions. LC BOLD activation significantly correlated with both, the main hub of the ECN, that is, the dorsolateral prefrontal cortex, and of the DMN, that is, the posterior cingulate cortex. Thus, the LC-NE system seems to be crucial in modulating neuronal network activity in a 3-back working memory task and might significantly contribute to cognitive impairments in schizophrenia.


Assuntos
Memória de Curto Prazo , Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Locus Cerúleo , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem
11.
Transl Psychiatry ; 11(1): 95, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542197

RESUMO

Structural brain abnormalities are a consistent finding in anorexia nervosa (AN) and proposed as a state biomarker of the disorder. Yet little is known about how regional structural changes affect intrinsic resting-state functional brain connectivity (rsFC). Using a cross-sectional, multimodal imaging approach, we investigated the association between regional cortical thickness abnormalities and rsFC in AN. Twenty-two acute AN patients and twenty-six age- and gender-matched healthy controls underwent a resting-state functional magnetic resonance imaging scan and cognitive tests. We performed group comparisons of whole-brain cortical thickness, seed-based rsFC, and network-based statistical (NBS) analyses. AN patients showed cortical thinning in the precuneus and inferior parietal lobules, regions involved in visuospatial memory and imagery. Cortical thickness in the precuneus correlated with nutritional state and cognitive functions in AN, strengthening the evidence for a critical role of this region in the disorder. Cortical thinning was accompanied by functional connectivity reductions in major brain networks, namely default mode, sensorimotor and visual networks. Similar to the seed-based approach, the NBS analysis revealed a single network of reduced functional connectivity in patients, comprising mainly sensorimotor- occipital regions. Our findings provide evidence that structural and functional brain abnormalities in AN are confined to specific regions and networks involved in visuospatial and somatosensory processing. We show that structural changes of the precuneus are linked to nutritional and functional states in AN, and future longitudinal research should assess how precuneus changes might be related to the evolution of the disorder.


Assuntos
Anorexia Nervosa , Anorexia Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Afinamento Cortical Cerebral , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
12.
Hum Brain Mapp ; 42(3): 811-823, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33128416

RESUMO

Recent functional magnetic resonance imaging (fMRI) studies showed that blood oxygenation level-dependent (BOLD) signal fluctuations in the default mode network (DMN) are functionally tightly connected to those in monoaminergic nuclei, producing dopamine (DA), and serotonin (5-HT) transmitters, in the midbrain/brainstem. We combined accelerated fMRI acquisition with spectral Granger causality and coherence analysis to investigate causal relationships between these areas. Both methods independently lead to similar results and confirm the existence of a top-down information flow in the resting-state condition, where activity in core DMN areas influences activity in the neuromodulatory centers producing DA/5-HT. We found that latencies range from milliseconds to seconds with high inter-subject variability, likely attributable to the resting condition. Our novel findings provide new insights into the functional organization of the human brain.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Dopamina/metabolismo , Serotonina/metabolismo , Tálamo/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Adulto Jovem
13.
Psychophysiology ; 58(7): e13688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33037836

RESUMO

Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting-state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous studies have been limited by small sample sizes, which impede the assessment of sex differences and aging effects on the association between ANS function and CT. To overcome these limitations, 20 groups worldwide contributed data collected under similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-analysis (N = 1,218 (50.5% female), mean age 36.7 years (range: 12-87)). Findings suggest a decline in HRV as well as CT with increasing age. CT, particularly in the orbitofrontal cortex, explained additional variance in HRV, beyond the effects of aging. This pattern of results may suggest that the decline in HRV with increasing age is related to a decline in orbitofrontal CT. These effects were independent of sex and specific to HRV; with no significant association between CT and HR. Greater CT across the adult lifespan may be vital for the maintenance of healthy cardiac regulation via the ANS-or greater cardiac vagal activity as indirectly reflected in HRV may slow brain atrophy. Findings reveal an important association between CT and cardiac parasympathetic activity with implications for healthy aging and longevity that should be studied further in longitudinal research.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca/fisiologia , Longevidade/fisiologia , Adulto , Espessura Cortical do Cérebro , Estudos Transversais , Feminino , Humanos , Masculino , Metanálise como Assunto , Córtex Pré-Frontal/fisiologia , Nervo Vago
14.
Eur Arch Psychiatry Clin Neurosci ; 270(5): 533-539, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30542819

RESUMO

Resilience is defined as the psychological resistance which enables the processing of stress and adverse life events and thus constitutes a key factor for the genesis of psychiatric illness. However, little is known about the morphological correlates of resilience in the human brain. Hence, the aim of this study is to examine the neuroanatomical expression of resilience in healthy individuals. 151 healthy subjects were recruited and had to complete a resilience-specific questionnaire (RS-11). All of them underwent a high-resolution T1-weighted MRI in a 3T scanner. Fine-grained cortical thickness was analyzed using FreeSurfer. We found a significant positive correlation between the individual extent of resilience and cortical thickness in a right hemispherical cluster incorporating the lateral occipital cortex, the fusiform gyrus, the inferior parietal cortex as well as the middle and inferior temporal cortex, i.e., a reduced resilience is associated with a decreased cortical thickness in these areas. We lend novel evidence for a direct linkage between psychometric resilience and local cortical thickness. Our findings in a sample of healthy individuals show that a lower resilience is associated with a lower cortical thickness in anatomical areas are known to be involved in the processing of emotional visual input. These regions have been demonstrated to play a role in the pathogenesis of stress and trauma-associated disorders. It can thus be assumed that neuroanatomical variations in these cortical regions might modulate the susceptibility for the development of stress-related disorders.


Assuntos
Córtex Cerebral/anatomia & histologia , Resiliência Psicológica , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Sci Rep ; 9(1): 14330, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586117

RESUMO

Understanding the neural mechanisms of suicidal behavior is crucial. While regional brain alterations have previously been reported, knowledge about brain functional connectomics is currently limited. Here, we investigated differences in global topologic network properties and local network-based functional organization in both suicide attempters and suicide relatives. Two independent samples of depressed suicide attempters (N = 42), depressed patient controls (N = 43), healthy controls (N = 66) as well as one sample of healthy relatives of suicide victims (N = 16) and relatives of depressed patients (N = 16) were investigated with functional magnetic resonance imaging in the resting-state condition. Graph theory analyses were performed. Assortativity, clustering coefficients, global efficiency, and rich-club coefficients were calculated. A network-based statistic approach was finally used to examine functional connectivity matrices. In comparison to healthy controls, both patient groups showed significant reduction in assortativity, and decreased functional connectivity in largely central and posterior brain networks. Suicide attempters only differed from patient controls in terms of higher rich-club coefficients for the highest degree nodes. Compared to patient relatives and healthy controls, suicide relatives showed reduced assortativity, reduced clustering coefficients, increased global efficiency, and increased rich-club coefficients for the highest degree nodes. Suicide relatives also showed reduced functional connectivity in one anterior and one posterior sub-network in comparison to healthy controls, and in a largely anterior brain network in comparison to patient relatives. In conclusion, these results suggest that the vulnerability to suicidal behavior may be associated with heritable deficits in global brain functioning - characterized by weak resilience and poor segregation - and in functional organization with reduced connectivities affecting the ventral and dorsal prefrontal cortex, the anterior cingulate, thalamus, striatum, and possibly the insula, fusiform gyrus and the cerebellum.


Assuntos
Encéfalo/fisiopatologia , Conectoma/psicologia , Transtorno Depressivo Maior/psicologia , Família/psicologia , Tentativa de Suicídio/psicologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Neuroimage ; 196: 318-328, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981856

RESUMO

The peripheral autonomic nervous system (ANS) adjusts the heart rate (HR) to intrinsic and extrinsic demands. It is controlled by a group of functionally connected brain regions assembling the so-called central autonomic network (CAN). More specifically, forebrain cortical regions, limbic and brainstem structures within the CAN have been identified as important components of circuits involved in HR regulation. The present study aimed to investigate whether functional connectivity (FC) between these regions varies in subjects with different heart rates. Thus, 84 healthy subjects were separated according to their HR in slow, medium and fast. We observed a direct association between HR and FC in CAN regions, where stronger FC was related to slower HR. This relationship, however, is non-linear, follows an exponential course and is not restricted to CAN areas only. The network-based analysis (NBS) using time series from 262 independent anatomical ROIs revealed significantly increased functional connectivity in subjects with slow HR compared to subjects with fast HR mainly in regions being part of the salience network, but also of the default-mode network. We additionally simulated the effect of aliasing on the functional connectivity using several TRs and heart rates to exclude the possibility that FC differences might be due to different aliasing effects in the data. The result of the simulation indicated that aliasing cannot explain our findings. Thus, present results imply a functionally meaningful coupling between FC and HR that need to be accounted for in future studies. Moreover, given the established link between HR and emotional, cognitive and social processes, present findings may also be considered to explain individual differences in brain activation or connectivity when using corresponding paradigms in the MR scanner to investigate such processes.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Encéfalo/fisiologia , Frequência Cardíaca , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Adulto Jovem
17.
Cortex ; 117: 147-156, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30978565

RESUMO

There is growing evidence for structural brain alterations in obsessive-compulsive disorder (OCD). The overall picture is however rather heterogeneous. To detect meaningful associations between clinical symptom profiles and structural alterations, we applied a classification approach, the k-means cluster analysis on clinical data, i.e., the Obsessive Compulsive Inventory-Revised (OCI-R) questionnaire. 73 OCD patients were assigned to three distinct symptom profiles. Using structural MRI and surface-based morphometric analysis (SBM), we compared cortical thickness between all OCD patients and 69 matched healthy subjects as well as among patients according to three symptom profiles. The total sample of OCD patients exhibited a thicker cortex in the pre-supplementary motor cortex (pre-SMA), dorsomedial prefrontal (DMPFC), anterior cingulate cortex and in the right anterior insula. Comparing patients of the three symptom clusters, a subgroup of OCD patients with a specific symptom profile was identified, which showed a thicker cortex in pre-SMA/DMPFC and in the contralateral primary motor cortex. In contrast to both other subgroups, patients in this group were mainly characterized by the predominance of a combination of checking and washing rituals. The other two OCD symptom subgroups showed comparable cortical thickness to healthy controls. Higher cortical thickness in regions of the motor circuitry seems to be related to motor activity-induced neuroplasticity in a specific group of OCD patients. Thicker anterior insular cortex in the total sample of patients points toward a more general pathophysiological process in OCD and potentially indicates abnormal interoceptive processing in OCD.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Comportamento Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Tamanho do Órgão/fisiologia , Adulto Jovem
18.
Front Neurosci ; 12: 718, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386203

RESUMO

Brainstem and midbrain nuclei are closely linked to cognitive performance and autonomic function. To advance the localization in this area, precise functional imaging is fundamental. In this study, we used a sophisticated fMRI technique as well as physiological recordings to investigate the involvement of brainstem/midbrain nuclei in cognitive control during a Stroop task. The temporal signal-to-noise ratio (tSNR) increased due to physiological noise correction (PNC) especially in regions adjacent to arteries and cerebrospinal fluid. Within the brainstem/cerebellum template an average tSNR of 68 ± 16 was achieved after the simultaneous application of a high-resolution fMRI, specialized co-registration, and PNC. The analysis of PNC data revealed an activation of the substantia nigra in the Stroop interference contrast whereas no significant results were obtained in the midbrain or brainstem when analyzing uncorrected data. Additionally, we found that pupil size indicated the level of cognitive effort. The Stroop interference effect on pupillary responses was correlated to the effect on reaction times (R 2 = 0.464, p < 0.05). When Stroop stimuli were modulated by pupillary responses, we observed a significant activation of the LC in the Stroop interference contrast. Thus, we demonstrated the beneficial effect of PNC on data quality and statistical results when analyzing neuronal responses to a cognitive task. Parametric modulation of task events with pupillary responses improved the model of LC BOLD activations in the Stroop interference contrast.

19.
Neuropsychologia ; 119: 182-190, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30092240

RESUMO

Brainstem and midbrain nuclei are closely linked to effective cognitive performance and autonomic function. In the present study, we aimed to investigate indices of successful and unsuccessful response inhibition paying particular attention to the interplay between locus coeruleus (LC), ventral tegmental area (VTA)/substantia nigra (SN) and, most importantly, peripheral markers. We aimed to get insight in the predictive value of neural and physiological signals in response inhibition. A total of 35 healthy controls were recruited from the local community and a typical task of behavioral response inhibition (Go/No-Go paradigm) was applied. We used high-resolution fMRI, advanced brainstem analyses and specifically corrected for respiratory signal and cardiac noise. Our main results characterize specific neural activation patterns during successful and unsuccessful response inhibition especially comprising the anterior cingulate as well as the medial and lateral prefrontal cortex. A significant activation of the dopaminergic nuclei (VTA/SN) was found during error processing, but not during response inhibition. Most remarkably, specific neural activation patterns (i.e., dorsal anterior cingulate cortex) as well as accompanying autonomic indices (i.e., skin conductance response (SCR)) were identified to hold predictive information on an individual's performance. In summary, the importance of the VTA/SN during error processing was shown. Furthermore, autonomic indices and specific neural activation patterns may contain valuable information to predict task performance.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Inibição Psicológica , Imageamento por Ressonância Magnética/métodos , Atividade Motora/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Adulto , Encéfalo/fisiologia , Feminino , Resposta Galvânica da Pele/fisiologia , Coração/fisiologia , Humanos , Masculino , Personalidade/fisiologia , Respiração , Adulto Jovem
20.
Artigo em Inglês | MEDLINE | ID: mdl-29355588

RESUMO

Impulsive behavior, difficulties in controlling anger and suicidal behavior are typical patterns of affective/behavioral dysregulation in patients with borderline personality disorder (BPD). Previous functional MRI studies in the resting state condition demonstrated altered functional connectivity (FC) between the anterior cingulate cortex (ACC) and the frontoparietal executive control network (ECN), which was significantly associated with impulsivity in BPD. Impulsivity is often defined as a function of inhibitory control, strongly relying on the proper functioning of the fronto-cingulo-striatal network. Noradrenergic, dopaminergic and serotonergic neurotransmitter systems are assumed to be involved in different forms of impulsive behavior and inhibitory control. In our previous study, we investigated the FC of the main monoamine-producing nuclei within the midbrain and brainstem, which were functionally integrated in specific resting-state networks. In the present study we investigated the resting-state FC of midbrain/brainstem nuclei in 33 unmedicated female patients with BPD and 33 matched healthy controls. We further related altered functional connectivity of these nuclei to the patient's degree of impulsivity. The main finding was that BPD patients showed stronger FC from the noradrenergic locus coeruleus (LC) to the ACC. Functional connectivity between the LC and ACC was positively associated with the degree of motor impulsivity in the total group. Controlling for aggression, a stronger FC was also found between serotonergic nucleus centralis superior (NCS) and the frontopolar cortex (FPC) in patients compared to controls. Furthermore, patients showed a weaker "anti-correlation" from the substantia nigra (SNc) to the left dorsolateral prefrontal cortex (DLPFC). The observed enhanced LC-ACC FC in BPD and its association with the motor impulsivity might be indicative of a noradrenergic dysfunction in the neural inhibitory control network, whereas the significant relationship between NCS-FPC FC and aggression points toward serotonergic contribution to prefrontal control of aggressive reactions.


Assuntos
Transtorno da Personalidade Borderline/diagnóstico por imagem , Transtorno da Personalidade Borderline/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Adulto , Sistema Nervoso Autônomo/fisiopatologia , Mapeamento Encefálico , Feminino , Humanos , Comportamento Impulsivo , Imageamento por Ressonância Magnética , Neurotransmissores/metabolismo , Descanso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA